Perubahan Basis (blogaritma.net) |
Secara Umum:Perubahan Basis di R2
Misal S dan S’ Basis di R2 dimana S = { u1,u2} dan S’ = { v1,v2}
i) Perhatikan basis S = { u1,u2}
Vektor di R2 yang direntang oleh S = w1,v1 dan v2
Misalkan : w = k1u1 + k2 u2 ; k1 dan k2 skalar
v1= a1u1 + a2 u2 ; a1 dan a2 skalar
v2= b1u1 + b2 u2 ; b1 dan b2 skalar
ii) Perhatikan Basis S’ = { v1,v2}
Vektor di R2 yang direntang oleh S’ = w1 , u1 dan u2
Misalkan : w = L1v1 + L2v2 ; L1 dan L2 skalar
u1= c1v1 + c2v2 ; c1 dan c2 skalar
u2= d1v1 + d2v2 ; d1 dan d2 skalar
$\left [ w\right ]_2 = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$
a) Uraikan w = k1u1 + k2 u2 dan
w = k1u1 + k2 u2
↔ w = k1(c1v1 + c2v2 ) + k2 ( d1v1 + d2v2 )
↔ w = ( k1c1v1 + k1c2v2 ) + ( k2d1v1 + k2d2v2 )
↔ w = ( k1c1 + k2d1) v1 + ( k1c2 + k2d2) v2
Sehingga :
$\leftrightarrow \left [ w \right ]_{2'}=\begin{bmatrix} k_1 c_1&+& k_2d_1\\k_1c_2 &+& k_2d_2
\end{bmatrix}$
$\leftrightarrow \left [ w \right ]_{2'}=\begin{bmatrix} c_1&+& d_1\\c_2 &+& d_2 \end{bmatrix}\begin{bmatrix}k_1\\k_2\end{bmatrix}$
$\leftrightarrow \left [ w \right ]_2=\begin{bmatrix} c_1&+& d_1\\c_2 &+& d_2 \end{bmatrix}\left [ w \right ]_2$
$ \left [ u_1 \right ]_{2'}$ $\left [ u_2 \right ]_{2'}$
$\therefore \left [ w \right ]_{2'}=\left [ \left [ u_1 \right ]_{2'}\vdots \left [ u_2 \right ]_{2'} \left [ w \right ]_{2}\right ]$
$ P=\left [ \left [ u_1 \right ]_{2'}\vdots \left [ u_2 \right ]_{2'} \right ]$
Disebut matriks transisi dari S ke S’
b) Uraikan w = L1v1 + L2v2 dan $\left [ w\right ]_{2'} = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}$
w = L1v1 + L2v2
↔ w = L1(a1u1 + a2 u2) + L2(b1u1 + b2 u2)
↔ w = (L1a1u1 + L1a2 u2) + (L2b1u1 + L2b2 u2)
↔ w = (L1a1 + L2b1)u1 + (L1a2 + L2b2)u2
Sehingga :
$\leftrightarrow \left [ w \right ]_{2}=\begin{bmatrix} L_1 a_1&+& L_2b_1\\L_1a_2 &+& L_2b_2
\end{bmatrix}$
$\leftrightarrow \left [ w \right ]_{2}=\begin{bmatrix} a_1&+& b_1\\a_2 &+& b_2 \end{bmatrix}\begin{bmatrix}L_1\\L_2\end{bmatrix}$
$\leftrightarrow \left [ w \right ]_2=\begin{bmatrix} a_1&+& b_1\\a_2 &+& b_2 \end{bmatrix}\left [ w \right ]_{2'}$
$\left [ v_1 \right ]_{2}$ $\left [ v_2 \right ]_{2}$
$\therefore \left [ w \right ]_{2}=\left [ \left [ v_1 \right ]_{2}\vdots \left [ v_2 \right ]_{2} \left [ w \right ]_{2'}\right ]$
$ P=\left [ \left [ v_1 \right ]_{2}\vdots \left [ v_2 \right ]_{2} \right ]$
Disebut matriks transisi dari S’ ke S
Referensi : Catatan Kuliah
No comments:
Post a Comment